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a b s t r a c t

The aim of the work presented in this paper is the numerical solution of low- and mid-fre-
quency time-harmonic acoustic multiple-scattering problem. A novel so-called ‘multi-
level’ modelling approach is proposed which is applicable to the study of a configuration
of well separated obstacles of arbitrary shape on which any type of acoustic boundary con-
dition can be applied. The generic character of the method is obtained by embedding the
superposition principle for the multiple-scattering influence in a state-of-the-art acoustic
modelling technique, the so-called Wave Based Method. The resulting approach success-
fully alleviates the geometrical limitations of the underlying Trefftz-based method and pre-
serves the method’s computational efficiency, resulting in a generic multiple-scattering
modelling framework with a superior computational efficiency in the low- as well as the
mid-frequency range. Several numerical validation examples show that the proposed
approach is as accurate as the classical single-scattering Wave Based Method and illustrate
the computational efficiency as compared to Boundary Element Methods.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the problem of efficiently solving multiple-scattering problems has received considerable attention in a
broad range of areas of applied sciences like acoustics, electromagnetism, elasticity and marine engineering. The aim of these
research efforts is to devise efficient and robust numerical methods which allow the study of the scattering behaviour of gen-
eral configurations of arbitrarily shaped obstacles. The scattering field in a multiple-scattering problem results from the
complex interaction between the incident excitation fields and the separate obstacles on the one hand and between the dif-
ferent scatterers on the other hand. The strength and nature of these interactions depend largely on the shape and surface
properties of the obstacles, their relative position with respect to each other and the physical properties of the surrounding
medium. Due to the complex nature of these phenomena, the development of numerical methods to study this type of prob-
lems requires special attention, especially when a large number of obstacles is present and/or when the frequency of interest
is high.

The main interest of the research presented in this paper is to model the time-harmonic acoustic scattering behaviour of a
large scatterer which is composed of many distinct smaller scattering objects. In order to attain this goal a general modelling
framework is needed which allows the solution of the Helmholtz equation in an unbounded medium which contains objects
with arbitrary shapes and properties. A wide variety of approaches to solve this problem can be found in literature. For an
extensive overview of these techniques, the reader is referred to the textbook [1] by Martin. Many of the proposed methods
. All rights reserved.
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are either based on an integral equation formulation of the multiple-scattering problem [2,3] or on an expansion of the scat-
tered field as a superposition of multipoles related to circular (or spherical) scatterer geometries [4–7]. The former approach
has the advantage of being (theoretically) applicable to generally shaped problem geometries and allows to incorporate arbi-
trary boundary conditions in the numerical models. The drawback is however that these methods involve elaborate (and
often problem-specific) theoretical derivations such that the development of a generic method of this type is not straight-
forward. The latter approach is based on the superposition principle for the scattered field and combines analytical T-matrix
formulations for each individual scatterer with the associated translation formulas to express the mutual coupling between
multiple scatterers [8]. Originally, these formulations were derived for simple geometries, such as cylinders, spheres, ellipses
and ellipsoids and their computational efficiency tends to break down if the geometry of the scatterer under study deviates
significantly from these basic shapes. The applicability of the method can be extended to more general geometries by either
using alternative (numerical) approaches such as classical Boundary Element Methods to derive the T-matrix for each indi-
vidual scatterer [9] or by decomposing the scatterer boundary into small segments which can be approximated by these sim-
pler shapes and applying a recursive aggregated T-matrix algorithm to derive the T-matrix for the complete scatterer [10].
The main challenges for this approach are the search for efficient numerical solution algorithms to solve the resulting sys-
tems of equations [11], the enhancement of the class of scatterer geometries which can be efficiently modelled and the incor-
poration of general boundary conditions into the formulation such as, e.g. random acoustic pressure, velocity or normal
impedance distributions.

The main focus of this paper is on the development of a generic numerical methodology to solve two-dimensional time-
harmonic acoustic scattering problems in which complex configurations of arbitrarily shaped scatterers are involved. In the
approach presented here, the generic character of the method is realised by integrating the multiple-scatterer interactions in
an existing numerical modelling framework. The most commonly applied numerical methodologies for the analysis of gen-
eral two-dimensional steady-state acoustic problems are deterministic element-based modelling techniques which belong
to either the family of the domain or the boundary discretisation methods:

� Of the boundary discretisation methods, the Boundary Element Method [12] (BEM), which is based on a boundary integral
formulation of the problem, is a well-established numerical technique. Within the applied boundary element discretisa-
tion, some acoustic boundary variables are expressed in terms of simple, polynomial shape functions. Enforcing the
boundary conditions results in a small numerical model. Since the boundary integral formulation and associated Green’s
functions inherently satisfy the Sommerfeld radiation condition the BEM does not require particular treatments to handle
unbounded domains. Moreover, since only the boundary of the scatterers needs to be discretised, this technique is inher-
ently adapted to the study of multiple-scattering problems.
� Within the family of domain discretisation methods, both the Finite Element Method [13] (FEM) and the Finite Difference

Method [14] (FDM) are well established. Both methods discretise the problem domain into a large but finite number of
small elements. Within these elements, the dynamic response variables, being the acoustic pressure or some derived vari-
ables, are described in terms of simple, usually polynomial shape functions. A difficulty in the application of domain dis-
cretisation based methods for multiple-scattering problems lies in the effective treatment of unbounded domains, since
these techniques model the entire problem domain. In order to overcome this limitation an artificial boundary Ct is intro-
duced to truncate the unbounded problem into a bounded problem which encloses all the separate obstacles and inho-
mogeneities. Special techniques are then required to reduce spurious reflection of waves at the truncation boundary,
which results in an exact or approximate representation of a purely outward travelling acoustic wave field along Ct.
The region between the problem boundary and the truncation boundary is modelled using conventional FEM or FDM
techniques. Three strategies are commonly applied in reducing the spurious reflections [15]: non-reflecting boundary
conditions (NRBCs) like the well-known Dirichlet-to-Neumann mapping (DtN) [16,17], infinite elements (IEs) [18–20]
or perfectly matched layers (PMLs) [21,22].
If the scatterer consists of several obstacles, which can be well separated from each other, the use of a single artificial
boundary Ct to enclose the entire scattering region, becomes too expensive. Instead it is preferable to enclose every
sub-scatterer j by a separate artificial boundary Cj

t . A boundary condition on C0t ¼ [C
j
t is then needed to restore the

mutual interactions between the sub-scatterers in the numerical model. This boundary condition must not only allow
outgoing waves to leave the computational domains without spurious reflections at the artificial boundary, but also prop-
agate the outgoing wave from sub-scatterer j to all other sub-domains, which it may reenter subsequently. To derive such
an exact boundary condition, an expression for the solution everywhere in the exterior region is needed. Neither non-
reflecting boundary conditions, nor perfectly matched layers provide such a representation, making these methods unfea-
sible for a partitioned solution approach of a multiple-scattering problem. Of the infinite element and DtN approaches, to
the authors’ knowledge only the latter has been extended to cope with multiple well separated scatterers [23,24]. In this
approach, the resulting acoustic field in the exterior region is described by a Fourier series representation based on a set of
close-fitting artificial circular truncation boundaries around each of the scatterers.

The methods described above share the property that they all apply approximating (usually polynomial) functions to rep-
resent the spatial variations of the acoustic variables. Since these shape functions are no exact solutions of the governing
differential equations, a very fine discretisation is required to suppress the associated pollution error [25] needed to obtain
a reasonable prediction accuracy. At high frequencies this requires the solution of very large numerical models, which is
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prohibitive due to the lack of sufficient computational resources. As a result, these techniques are limited to low-frequency
applications [26,27].

Since many of the interesting phenomena in multiple-scatterer problems occur at frequencies beyond the limiting
frequencies of the element-based methods described above, an alternative more efficient modelling technique is needed
to form the basis of the envisaged modelling framework. The Wave Based Method (WBM) [28] is a deterministic tech-
nique for the analysis of steady-state time-harmonic vibro-acoustic problems. The method is based on an indirect Trefftz
approach [29], in that the dynamic response variables are described using wave functions which exactly satisfy the gov-
erning differential equation. However, the wave functions may violate the boundary and continuity conditions. Enforcing
the residual boundary and continuity errors to zero in a weighted residual scheme yields a small matrix equation.
Solution of this matrix equation results in the contribution factors of the wave functions used in the expansion of
the dynamic field variables. The WBM has been applied successfully for many steady-state structural dynamic problems
[30,31], interior acoustic problems [32] and interior vibro-acoustic problems [33]. This technique has also been success-
fully extended to exterior acoustic problems [34] through the introduction of an artificial truncation boundary and the
use of a special set of scattering wave functions to explicitly describe the acoustic pressure field in the exterior domain.
It is shown that, due to the small model size and the enhanced convergence characteristics, the WBM has a superior
numerical performance as compared to the element-based methods. As a result, problems at higher frequencies may
be tackled.

This paper discusses a new modelling concept for acoustic radiation and scattering problems, particularly suited for
the treatment of problems involving multiple distinct scatterers. Like in the multiple-scattering DtN- [23] and T-matrix
[11] approaches, the total acoustic scattering problem is decomposed into a set of coupled single-scattering problems,
each of which is linked to a single object in the configuration. These individual problems are treated separately by
the classical WBM methodology for unbounded problems. Application of the addition theorem in the domain between
the different truncation boundaries for each of the scatterers and modification of the weighted residual formulation
underlying the WBM method results in a system of algebraic equations which governs the original multiple-scattering
problem. The outline of this paper is the following: Sections 2 and 3 briefly address the general acoustic problem setting
and describe the WB modelling methodology for two-dimensional unbounded acoustic problems. Section 4 is devoted to
the discussion of the new multi-level modelling concept, which incorporates multiple scattering in the WB methodology.
In Section 5 the new method is applied to a number of examples, in order to both illustrate its potential and validate the
accuracy of the obtained results. Finally, Section 6 concludes the paper with general remarks and some possible topics
for future research.

2. Problem definition

Consider a general 2D unbounded acoustic problem shown in Fig. 1. The steady-state acoustic pressure inside the prob-
lem domain X is governed by the inhomogeneous Helmholtz equation:
r2pðrÞ þ k2pðrÞ ¼ �jq0xdðr; rqÞq; r 2 X ð1Þ
with x the circular frequency and k = x/c the acoustic wave number. The acoustic fluid is characterised by the density q0 and
the speed of sound c. The fluid is excited by a cylindrical acoustic volume velocity source q. Throughout this article, a har-
monic time dependence ejxt of the dynamic quantities and excitations is assumed. The problem boundary C consists of two
parts: the finite part of the boundary, Cb, which constitutes the boundary of all the obstacles, and the boundary at infinity,
C1. Based on the three types of commonly applied acoustic boundary conditions, the finite boundary can be further divided
into three non-overlapping parts: Cb = Cv [ Cp [ CZ, on which Neumann, Dirichlet and Robin type boundary conditions are
applied respectively. If we define the velocity operator Lv ð�Þ, which relates the acoustic normal velocity to the acoustic pres-
sure field, as:
Lvð�Þ ¼
j

q0x
@�
@n

; ð2Þ
Fig. 1. A general 2D unbounded acoustic problem.
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we can write these boundary conditions as:
Neumann conditions : LvðpðrÞÞ ¼ �vnðrÞ; r 2 Cv ; ð3Þ
Dirichlet conditions : pðrÞ ¼ �pðrÞ; r 2 Cp; ð4Þ

Robin conditions :
pðrÞ
LvðpðrÞÞ

¼ ZnðrÞ; r 2 CZ ; ð5Þ
where the quantities �vn, �p and Zn are, respectively, the imposed normal velocity, pressure and normal impedance. At the
boundary at infinity C1 the Sommerfeld radiation condition [35] is applied in order to ensure that the acoustic wave field
is purely outgoing at infinity:
lim
jrj!1

ffiffiffi
r
p @pðrÞ

@jrj þ jkpðrÞ
� �� �

¼ 0: ð6Þ
The Helmholtz equation (1) together with the associated boundary conditions (3)–(6) define a unique dynamic acoustic
pressure field p(r).

3. Basic concepts of the Wave Based Method

The Wave Based Method (WBM) [28] is a numerical modelling method based on an indirect Trefftz approach [29] for the
solution of steady-state acoustic problems in both bounded and unbounded problem domains. Instead of discretising the
entire problem domain (or its boundary) in a large number of small elements and using simple approximating polynomials
to describe the acoustic pressure variations like in the FEM, FDM or BEM, the WBM modelling concept is based on a parti-
tioning of the problem into a limited number of large subdomains within which the field variables are expressed as an
expansion in terms of wave functions, which inherently satisfy the governing equation, the Helmholtz equation (1). The de-
grees of freedom are the weighting factors of the wave functions in this expansion. Enforcing the boundary conditions along
the problem boundaries and continuity conditions on the interfaces between the subdomains using a weighted residual for-
mulation yields a system of linear equations whose solution vector contains the unknown wave function weighting factors.

The general modelling procedure consists of the following steps:

A. Partitioning into subdomains.
B. Selection of the wave functions in the pressure expansion.
C. Construction of the system of equations via a weighted residual formulation of the boundary conditions and the con-

tinuity conditions.
D. Solution of the system of equations and postprocessing of the dynamic variables.

3.1. Domain partitioning

Desmet [28] proposes the basic WBM modelling approach. In this work, a set of approximation functions to describe the
steady-state acoustic pressure inside a bounded acoustic domain is derived and it is proven that a sufficient condition for the
theoretical convergence of the WBM is the convexity of the bounded domain [28]. In a general acoustic problem however,
the problem domain may be non-convex requiring the entire problem domain to be partitioned into a number of convex
subdomains. If the WBM is applied for unbounded problems, the introduction of an artificial truncation boundary Ct restricts
the computational domain to a finite region X� [34], much like in the approaches which enable the domain discretisation
based modelling strategies to cope with unbounded problems. After this partitioning, the region X� between the truncation
boundary and the problem boundary is partitioned into NX non-overlapping, convex subdomains X(a), as is illustrated in
Fig. 2. The unbounded region X+ exterior to Ct is modelled explicitly as an additional acoustic subdomain XðNXþ1Þ. As a result,
the combined interior/exterior acoustic problem domain is partitioned into NX + 1 subdomains: X ¼ X� [Xþ ¼

SNXþ1
a¼1 XðaÞ.
Fig. 2. A WB partitioning of the 2D unbounded problem.
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The boundary of each of the acoustic subdomain X(a) is denoted as @X(a). It consists of four mutually exclusive parts,
@XðaÞ ¼ CðaÞv [ CðaÞZ [ CðaÞp [ CðaÞI ; ð7Þ
on which the following conditions apply:

� CðaÞv ¼ Cv \ @XðaÞ indicates the part of the boundary of subdomain X(a) on which normal velocity boundary conditions (3)
are applied.

� CðaÞp ¼ Cp \ @XðaÞ indicates the part of the boundary of subdomain X(a) on which pressure boundary conditions (4) are
applied.

� CðaÞZ ¼ CZ \ @XðaÞ indicates the part of the boundary of subdomain X(a) on which normal impedance boundary conditions
(5) are applied.

� Cða;bÞI ¼ Cðb;aÞI ¼ @XðaÞ \ @XðbÞ indicates the common interface between subdomain X(a) and subdomain X(b). The collection
of all subdomain interfaces in which subdomain X(a) is involved is denoted as CðaÞI ¼

SNXþ1
b¼1;b–aC

ða;bÞ
I .

The boundary of the unbounded acoustic subdomain XðNXþ1Þ additionally encompasses the boundary at infinity C1, along
which the Sommerfeld radiation condition (6) needs to be fulfilled.

In order to enforce the total resulting acoustic pressure field to be continuous, continuity conditions must be applied at all
the interfaces Cða;bÞI between the acoustic subdomains X(a) and X(b). To couple the pressure fields in the two subdomains,
Pluymers [36] proposes two types of coupling conditions:

� Pressure–velocity continuity conditions: In order to obtain a uniquely defined acoustic field which is continuous across the
interface between the two subdomains, one continuity condition must be applied on each of the subdomains. Imposing a
pressure continuity condition on subdomain X(a) and a normal velocity condition on X(b) along the interfaces Cða;bÞI;p and
Cðb;aÞI;v is a conventional way to attain this goal:
Pressure continuity conditions : pðaÞðrÞ ¼ pðbÞðrÞ; r 2 Cða;bÞI;p ; ð8Þ

Normal velocity conditions : LðaÞv ðpðrÞÞ ¼ �L
ðbÞ
v ðpðrÞÞ; r 2 Cðb;aÞI;v ð9Þ

with LðaÞv ð�Þ ¼
j

q0x
@�
@nðaÞ the velocity operator (2) applied to a point on the boundary of subdomain X(a) and n(a) the normal

direction pointing out of X(a).
� Equivalent normal velocity continuity conditions: Pluymers [36] proposes an alternative way to couple both acoustic fields.

In order to describe these conditions, the following equivalent normal velocity operators are introduced
LðaÞeqþð�Þ ¼
j

q0x
@�
@nðaÞ

� 1
Zint
�; ð10Þ

LðaÞeq�ð�Þ ¼ �
j

q0x
@�
@nðaÞ

� 1
Zint

� ð11Þ

with Zint being an impedance coupling factor.
The equivalent normal velocity continuity conditions along the boundaries Cða;bÞI;Z and Cðb;aÞI;Z are defined as

LðaÞeqþðpðaÞðrÞÞ ¼ L
ðbÞ
eq�ðpðbÞðrÞÞ; r 2 Cða;bÞI;Z ; ð12Þ

LðbÞeqþðpðbÞðrÞÞ ¼ L
ðaÞ
eq�ðpðaÞðrÞÞ; r 2 Cðb;aÞI;Z : ð13Þ

These continuity conditions result in a more stable formulation than using the conventional conditions enforcing pres-
sure and normal velocity continuity, due to the introduction of damping via Zint [37]. Pluymers [36] shows that choosing
Zint to be the characteristic fluid impedance q0c is beneficial for the convergence rate of the method.

Since the governing Helmholtz equation is a second order partial differential equation, a single condition needs to be im-
posed along each of the boundaries of subdomain X(a). As a result, one of the aforementioned types of continuity conditions
needs to be selected for each interface linking X(a) to its neighboring subdomains. The choice of the type of condition im-
posed on each individual interface is however independent such that the basic WBM modelling approach does not prohibit
the concurrent use of both types of continuity conditions within a single WBM model as long as the associated parts of the
domain boundary Cða;bÞI;fp;vg and Cða;bÞI;Z are non-overlapping. The WBM adopts a direct coupling approach to enforce the coupling
conditions described above. This implies that the continuity conditions (8), (9), (12) and (13) are applied directly on the
acoustic quantities of the considered subdomains, without introduction of auxiliary variables. In order for the problem to
be well-posed, one continuity condition is imposed on each subdomain.
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3.2. Field variable expansion

The steady-state acoustic pressure field p(a)(r) in each of the acoustic subdomains X(a), a = 1, . . . ,NX + 1 is approximated
by a solution expansion p̂ðaÞðrÞ in terms of nðaÞw acoustic wave functions UðaÞw :
pðaÞðrÞ ’ p̂ðaÞðrÞ ¼
XnðaÞw

w¼1

pðaÞw UðaÞw ðrÞ þ p̂ðaÞq ðrÞ ¼ UðaÞðrÞpðaÞw þ p̂ðaÞq ðrÞ: ð14Þ
The wave function contributions pðaÞw are the weighting factors for each of the selected wave functions UðaÞw . Together they
form the vector of degrees of freedom pðaÞw . The corresponding a priori defined wave functions are collected in the row vector
U(a). The set of all nW ¼

PNXþ1
a¼1 nðaÞw acoustic wave function contributions pw is collected in the column vector pw, while the

row vector U contains all nW wave functions. p̂ðaÞq represents a particular solution resulting from acoustic source terms q(a) in
the right hand side of the inhomogeneous Helmholtz equation (1).

3.2.1. Wave functions for a bounded subdomain
Each acoustic wave function UðaÞw ðrÞ exactly satisfies the homogeneous Helmholtz equation (1). For 2D bounded subdo-

mains two types of wave functions which govern the homogeneous part of the Helmholtz equation are distinguished, the
r- and the s-set:
XnðaÞw

w¼1

pðaÞw UðaÞw ðrÞ ¼
XnðaÞwr

wr¼1

pðaÞwr
UðaÞwr
ðrÞ þ

XnðaÞws

ws¼1

pðaÞws
UðaÞws
ðrÞ ð15Þ
with nðaÞw ¼ nðaÞwr þ nðaÞws . These wave functions are defined as:
UðaÞw ðr x; yð ÞÞ ¼
UðaÞwr
ðx; yÞ ¼ cosðkðaÞxwr

xÞe�jkðaÞywr
y;

UðaÞws
ðx; yÞ ¼ e�jkðaÞxws

x cosðkðaÞyws
yÞ:

8<: ð16Þ
In order for the wave functions (16) to be exact solutions of (1), they should satisfy the associated dispersion relations:
ðkðaÞxwr
Þ2 þ ðkðaÞywr

Þ2 ¼ ðkðaÞxws
Þ2 þ ðkðaÞyws

Þ2 ¼ k2
: ð17Þ
As a result, an infinite number of wave functions (16) can be defined for expansion (14). Desmet [28] proposes to select the
following wave number components
ðkðaÞxwr
; kðaÞywr

Þ ¼ wðaÞ1 p
LðaÞx

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðkðaÞxwr

Þ2
q !

; ð18Þ

ðkðaÞxws
; kðaÞyws

Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðkðaÞyws

Þ2
q

;
wðaÞ2 p

LðaÞy

 !
ð19Þ
with wðaÞ1 and wðaÞ2 ¼ 0;1;2; . . . The dimensions LðaÞx and LðaÞy represent the dimensions of the (preferably smallest) bounding
rectangle, circumscribing the considered subdomain a.

When a cylindrical volume–velocity source is present in the bounded domain, the free-field acoustic pressure field due to
this source at source position ðxðaÞq ; yðaÞq Þ is added to the solution expansion:
p̂ðaÞq ðx; yÞ ¼
q0xqðaÞ

4
Hð2Þ0 ðkrðaÞq Þ ð20Þ
with rðaÞq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xðaÞq Þ2 þ ðy� yðaÞq Þ2

q
the distance to the source point and Hð2Þ0 ð�Þ the zero-order Hankel function of the second

kind.

3.2.2. Wave functions for an unbounded subdomain
The wave functions for the unbounded domain XðNXþ1Þ are chosen to implicitly comply with not only the Helmholtz equa-

tion (1), but also the Sommerfeld radiation condition (6). This removes the need to explicitly impose a radiation condition,
similar to the Green’s functions applied in the BEM. Herrera [38] shows that the following expansion yields a complete set of
basis functions for a homogeneous Neumann problem exterior to an infinitely long circular cylinder with radius R:
Xn
ðNXþ1Þ
w

w¼1

pðNXþ1Þ
w UðNXþ1Þ

w ðrÞ ¼ pðNXþ1Þ
0 Hð2Þ0 ðkrÞ þ

XN

w¼1

ðpðNXþ1Þ
wc

Hð2Þw ðkrÞcosðwhÞ þ pðNXþ1Þ
ws

Hð2Þw ðkrÞsinðwhÞÞ ð21Þ
with r and h polar coordinates, N the number of circumferential orders in the solution expansion ðnðNXþ1Þ
w ¼ 2N þ 1Þ and

Hð2Þw ð�Þ the wth order Hankel function of the second kind. The contributions p0; pwc
and pws

are determined by the imposed
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velocity distribution along the circumference of the cylinder. From this expansion, the following set of wave functions for
unbounded domains is derived:
UðNXþ1Þ
w ðrðr; hÞÞ ¼

UðNXþ1Þ
wc

ðr; hÞ ¼ Hð2Þw ðkrÞ cosðwhÞ; w ¼ 0;1;2; . . . ;

UðNXþ1Þ
ws

ðr; hÞ ¼ Hð2Þw ðkrÞ sinðwhÞ; w ¼ 1;2;3; . . .

(
ð22Þ
For modelling sources in unbounded acoustic domains, two source definitions are available [39]. On the one hand, the
particular solution for a cylindrical source (20) can be applied. On the other hand, excitation under the form of an acoustic
plane wave, travelling at a propagation angle /, is often used for acoustic scattering calculations. The plane wave satisfies the
Helmholtz equation (1), and ensures that no reflection occurs at infinity. As a result, the plane wave acoustic pressure field
p̂ðaÞpwðx; yÞ can be added to the pressure expansion (14) in the same way as a point source:
p̂ðaÞpwðx; yÞ ¼ ejkdð/Þ; ð23Þ
where d(/) is the propagation vector of the plane wave.

3.3. Evaluation of boundary and interface conditions

With the use of the basis functions (15) and (21) in the proposed pressure expansion (14), the Helmholtz equation (1) and
the Sommerfeld radiation condition (6) are always exactly satisfied, irrespective of the values of the unknown wave function
contributions. These contributions only depend on the imposed acoustic boundary and continuity conditions.

Both the boundary and the continuity conditions are defined at an infinite number of boundary positions. Since only finite
sized prediction models are amenable to numerical implementation, the boundary and the continuity conditions are, for
each subdomain, transformed into a weighted residual formulation. In this formulation, the following definitions for the
residual errors are used:

Boundary residuals:
r 2 CðaÞv : RðaÞv ðrÞ ¼ L
ðaÞ
v ðp̂ðaÞðrÞÞ � �vnðrÞ;

r 2 CðaÞZ : RðaÞZ ðrÞ ¼ L
ðaÞ
v ðp̂ðaÞðrÞÞ �

p̂ðaÞðrÞ
ZnðrÞ

;

r 2 CðaÞp : RðaÞp ðrÞ ¼ p̂ðaÞðrÞ � �pðrÞ:

ð24Þ

Interface residuals – Pressure–velocity coupling:

r 2 Cða;bÞI;p : Rða;bÞI;p ðrÞ ¼ p̂ðaÞðrÞ � p̂ðbÞðrÞ;

r 2 Cða;bÞI;v : Rða;bÞI;v ðrÞ ¼ L
ðaÞ
v ðp̂ðaÞðrÞÞ � L

ðbÞ
v ðp̂ðbÞðrÞÞ:

ð25Þ

Interface residuals – Equivalent normal velocity coupling:

r 2 Cða;bÞI;Z : Rða;bÞI;Z ðrÞ ¼ L
ðaÞ
eqþðp̂ðaÞðrÞÞ � L

ðbÞ
eq�ðp̂ðbÞðrÞÞ: ð26Þ

For each subdomain, the error functions are orthogonalised with respect to a weighting function ~pðaÞ or its derivative. The
weighted residual formulation, applying the introduced error functions for subdomain X(a), is expressed as
Z

CðaÞv

~pðaÞðrÞRðaÞv ðrÞdCþ
Z

CðaÞ
Z

~pðaÞðrÞRðaÞZ ðrÞdCþ
Z

CðaÞp

�LðaÞv ð~pðaÞðrÞÞR
ðaÞ
p ðrÞdC

þ
XNXþ1

b¼1;b–a

Z
Cða;bÞ

I;p

�LðaÞv ð~pðaÞðrÞÞR
ða;bÞ
I;p ðrÞdCþ

Z
Cða;bÞ

I;v

~pðaÞðrÞRða;bÞI;v ðrÞdCþ
Z

Cða;bÞ
I;Z

~pðaÞðrÞRða;bÞI;Z ðrÞdC

" #
¼ 0: ð27Þ
Like in the Galerkin weighting procedure, used in the FEM, the weighting functions ~pðaÞ are expanded in terms of the same set
of basis functions used in the pressure expansions (14) and (21):
~pðaÞðrÞ ¼
XnðaÞw

w¼1

~pðaÞw UðaÞw ðrÞ ¼ UðaÞðrÞ~pðaÞw : ð28Þ
From here onwards, the position dependency of the vectors is omitted in the notations to enhance the readability.
Substitution of the pressure expansion (14) and the weighting function expansion (28) into the weighted residual formu-

lation (27) yields a matrix equation linking the unknown wave function contributions for subdomain X(a) to those of the
adjacent subdomains:
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~pðaÞTw ½Cða;1Þaa pð1Þw þ � � � þ Cða;a�1Þ
aa pða�1Þ

w þ AðaÞaa pðaÞw þ Cða;aþ1Þ
aa pðaþ1Þ

w þ � � � þ Cða;NXþ1Þ
aa pðNXþ1Þ

w � f ða;1Þa � � � � � f ða;a�1Þ
a

� f ðaÞa � f ða;aþ1Þ
a � � � � � f ða;NXþ1Þ

a � ¼ 0: ð29Þ
For a detailed description of integral formulations underlying the acoustic system matrices Aaa
(�,�), coupling matrices Caa

(�,�)

and loading vectors fa
(�) the reader is referred to Pluymers [36]. Enforcing that this formulation holds for any weighting func-

tion requires the matrix equation between brackets to be zero.
Construction of a similar set of algebraic equations for all subdomains X(a), a = 1, . . . ,NX + 1 and assembly of these results

in a fully populated, complex and generally non-symmetric system of equations consisting of nW algebraic equations gov-
erning the nW unknown wave function contribution factors pw:
Að1;1Þaa Cð1;2Þaa � � � Cð1;NXþ1Þ
aa

Cð2;1Þaa Að2;2Þaa � � � Cð2;NXþ1Þ
aa

..

. ..
. . .

. ..
.

CðNXþ1;1Þ
aa CðNXþ1;2Þ

aa � � � AðNXþ1;NXþ1Þ
aa

2666664

3777775 �
pð1Þw

pð2Þw

..

.

pðNXþ1Þ
w

2666664

3777775 ¼
f ð1Þa

f ð2Þa

..

.

f ðNXþ1Þ
a

2666664

3777775: ð30Þ
The calculation of the matrix coefficients involves integrations of highly oscillatory functions. Because the WB method,
like any Trefftz based method, yields ill-conditioned system matrices [40,41], the numerical integrations must be performed
carefully, making sure that a sufficiently high accuracy in determining the matrix coefficients is obtained. The small model
sizes, combined with the method’s high convergence rate [28], make it possible for the WBM to tackle problems at higher
frequencies and at an affordable computational cost as compared to the element based methods.

3.4. Solution of the system of equations and postprocessing

After selection of a converging set of wave functions and construction of the WB model, the third step in the WB mod-
elling process is the solution of the WB matrix equation (30) for the nW wave function contribution factors pw.

The final step is backsubstitution of the resulting wave function contribution factors into the pressure expansions (14),
yielding an approximation p̂ðrÞ of the acoustic pressure field. Derived acoustic variables, such as acoustic velocities, inten-
sities and power distributions, can be easily obtained from the proposed wave function set Uw and the calculated contribu-
tion factors pw.

� An approximation v̂ of the acoustic velocity vector field results from:
v̂ ¼ j
q0x

ð$Upw þ $p̂qÞ: ð31Þ
� An approximation bI of the (active) acoustic intensity vector field results from:
bI ¼ 1
2

R Upw þ p̂q
� � j

q0x
$Upw þ $p̂q
� �� � !

: ð32Þ
� An approximation cW of the (active) acoustic power through a surface S results from:
cW ¼
ZZ

S

1
2

R Upw þ p̂q
� � j

q0x
$Upw þ $p̂q
� �� � !

ndS ð33Þ
with n the normal vector on S; Rð�Þ the real part of a complex quantity and � the complex conjugate operator.

Note that – in contrast to the polynomial shape functions used in conventional element based techniques – there is no
additional loss of accuracy as compared to the primary field variables in the derived variables, since the derivatives of
wave functions are wave functions themselves with an identical spatial resolution as the primary field approximation
functions.

4. A multi-level modelling concept for multiple-scattering problems

The WBM approach described in Section 3 has proven to be an efficient deterministic modelling technique for the study of
low- and mid-frequency two-dimensional acoustic scattering problems. The applied partitioning approach and the underly-
ing geometrical convergence requirements however impose severe limitations to the applicability of the method for multi-
ple-scattering problems with many well separated scatterers. This section discusses these limitations into more detail and
proposes a solution in the form of a novel multi-level modelling concept. This approach is based on an alternative problem
partitioning strategy and the application of the superposition principle for the description of the steady-state acoustic pres-
sure field in the exterior problem region X+.
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4.1. WBM modelling limitations

The WBM has shown to be efficient in modelling 2D acoustic radiation problems [34]. However, when multiple acoustic
scatterers are present and a direct domain subdivision strategy as presented in Section 3 is used, the method’s efficiency
tends to deteriorate. This loss of efficiency originates from two effects:

� Relationship between number of DOFs and size of the truncation circle Ct: When the different scatterers are well separated, a
large truncation circle is needed in order to enclose the entire configuration. The definition of the wave functions used to
model the sound propagation in the exterior region X+ reveals an inverse proportionality between the radius of the trun-
cation circle and the circumferential spatial resolution of the basis functions. Hence, the use of a larger artificial boundary,
requires more unbounded wave functions in order to retain a comparable representation accuracy. In addition, a large
bounded interior region is created which needs to be modelled using the bounded wave function expansions of type
(15). Expressions (18) and (19) show that the spatial resolution of these functions is proportional to the overall dimen-
sions of the region which is being modelled. Hence, if the scatterers become more separated, the number of basis func-
tions required to model the interior region rises approximately proportional with the truncation radius. The resulting
computational load to build the acoustic system matrices (which requires the numerical evaluation of n2

W highly oscilla-
tory integrals) rapidly becomes prohibitively high. This effect is similar to the limitations seen in classical DtN formula-
tions for element-based numerical methods, where the number of unknowns for 2D problems grows approximately
proportional with the square of the overall domain dimensions.
� Geometrical convergence requirements of the WBM: The proposed wave function expansion to approximate the steady-

state acoustic pressure field in a bounded subdomain requires each of the subdomains to be convex in order to ensure
the convergence of the method towards the exact solution. Since all the scatterers need to be included within a single
circle, a complex partitioning of the interior region X� is often needed in order to satisfy this condition. This increase in
subdomains is disadvantageous for the convergence rate of the method, since it introduces many additional acoustic
interfaces along which continuity conditions need to be enforced. Moreover, some very common geometrical features
cannot be dealt with at all. A typical example of this is the study of the acoustic behaviour of a two-dimensional scat-
terer which contains two or more circular obstacles. Since the region between two holes or between a hole and the
artificial boundary Ct introduced by the WBM modelling process needs to be partitioned into convex subdomains, only
an approximate, linearised representation of the circular edge can be used to construct a convergent WBM model. The
resulting model is only a crude geometrical approximation of the actual problem and has the additional disadvantage
of being inefficient since a reasonable representation accuracy of the circle requires many convex subdomains sur-
rounding it.

4.2. Multiple-scattering problem decomposition

The limitations of the WBM for the analysis of multiple-scattering problems described above can be resolved if a compos-
ite truncation boundary C0t is defined which consists of a collection of circles, each of which encloses one single scattering
object. In contrast to the modelling approach detailed in Section 3, the exterior solution field pNXþ1 can no longer be ex-
panded in terms of a single series of exact solutions of the Helmholtz equation since there exists no single coordinate system
in which the Helmholtz operator is separable in the exterior domain X+ which is associated with C0t . Moreover, the solution
field is no longer purely outgoing in X+, since part of the scattered field leaving one of the circular boundaries may reenter
another and vice versa.

Similar to Grote [23], the derivation of this approach starts by considering the general two-scatterer problem given in
Fig. 3. In a first step, each of the scatterers i = 1,2 is enclosed by a close-fitting circular truncation boundary C0t;i and a local
polar coordinate system (ri,hi) is defined in the center ci of these circles. We define the exterior regions outside of both trun-
cations as X+,1 and X+,2. Based on these definitions, the exterior solution field pNXþ1 is now decomposed into two purely out-
going wave fields pðNXþ1;1Þ and pðNXþ1;2Þ, which solve the Helmholtz equation and the Sommerfeld radiation condition in one of
these regions:
S1 S2

Fig. 3. General two scatterer problem.
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rpðNXþ1;1Þðr1; h1Þ þ k2pðNXþ1;1Þðr1; h1Þ ¼ 0; ðr1; h1Þ 2 Xþ;1; ð34Þ

lim
r!1

ffiffiffi
r
p @

@r
þ jk

� �
pðNXþ1;1Þ

� �
¼ 0 ð35Þ
and
rpðNXþ1;2Þðr2; h2Þ þ k2pðNXþ1;2Þðr2; h2Þ ¼ 0; ðr2; h2Þ 2 Xþ;2; ð36Þ

lim
r!1

ffiffiffi
r
p @

@r
þ jk

� �
pNðXþ1;2Þ

� �
¼ 0: ð37Þ
Both fields are constructed independently of each other. Field pðNXþ1;1Þ is entirely determined by the conditions which are
imposed along the truncation circle C0t;1 and field pðNXþ1;2Þ only depends on the conditions along C0t;2. To solve these problems,
the WBM for unbounded problems as described in Section 3 can be applied. This results in two independent wave function
expansions for each of the outgoing wave fields:
UðNXþ1;iÞ
n ðri; hiÞ ¼

UðNXþ1;iÞ
nc

ðri; hiÞ ¼ Hð2Þn ðkriÞ cosðnhiÞ;
UðNXþ1;iÞ

ns
ðri; hiÞ ¼ Hð2Þn ðkriÞ sinðnhiÞ;

(
i ¼ 1;2: ð38Þ
Finally, the wave field of interest pðNXþ1Þ is coupled to both outgoing wave fields pðNXþ1;1Þ and pðNXþ1;2Þ by matching
pðNXþ1;1Þ þ pðNXþ1;2Þ to pðNXþ1Þ along C0t ¼ C0t;1 [ C0t;2:
pðNXþ1Þðr; hÞ ¼ pðNXþ1;1Þðr; hÞ þ pðNXþ1;2Þðr; hÞ; ðr; hÞ 2 C0t : ð39Þ
Since the behaviour of both outgoing wavefields is entirely determined by their behaviour on C0t , relationship (39) holds
for the entire exterior region X+ = X+,1 \X+,2 of the originally proposed problem partitioning. For the proof of the existence
and uniqueness of the proposed decomposition, the reader is referred to Grote [23].

4.3. A multi-level WBM modelling concept for multiple-scattering problems

The decomposition proposed above can be used as a basis for the so-called multi-level WBM modelling approach for the
study of multiple-scattering problems. This approach is represented for a general two-scatterer problem in Fig. 4, but can
easily be extended to a general configuration of nk scatterers. Each of the truncation circles C0t;i, defines a ‘level’ Li in the mul-
tiple scattering model, the outgoing wave-field in each of which can be described using a wave function expansion of type
(38). By matching all these expansions, the pressure field in the exterior region X+ of the total problem will be described as a
summation of the fields present in each level:
pðNXþ1Þ ¼
Xnk

Li¼1

UðNXþ1;LiÞ � pðNXþ1;LiÞ
n ¼ ½UðNXþ1;L1Þ . . . UðNXþ1;Lnk

Þ� �
pðNXþ1;L1Þ

n

..

.

p
ðNXþ1;Lnk

Þ
n

2664
3775: ð40Þ
t,2

Weighted
Residual

Formulation
S1 S2

S2

S1

=
t,1

Fig. 4. The multi-level WBM modelling approach.
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With the function set known, the wave model for this domain can now be constructed by enforcing the boundary and
continuity conditions through the application of a weighted residual formulation. The residuals of the boundary conditions
are again given by (24), now evaluated using the new, composite wave function set. The continuity conditions can be used to
couple the multi-level unbounded wave set with bounded domains in the appropriate level, in the same way as a coupling
would be set up between a conventional unbounded and bounded wave domain. The bounded domain in each of the levels
can then further be modelled using the conventional wave based domain division techniques and function sets. The
weighted residual formulation is written as:
XNX

a¼1

Z
CðaÞv

~pðaÞðrÞRðaÞv ðrÞdCþ
Z

CðaÞZ

~pðaÞðrÞRðaÞZ ðrÞdCþ
Z

CðaÞp

�LðaÞv ð~pðaÞðrÞÞR
ðaÞ
p ðrÞdCþ

XNX

b¼1;b–a

Z
Cða;bÞI;p

�LðaÞv ð~pðaÞðrÞÞR
ða;bÞ
I;p ðrÞdC

" 

þ
Z

Cða;bÞ
I;v

~pðaÞðrÞRða;bÞI;v ðrÞdCþ
Z

Cða;bÞ
I;Z

~pðaÞðrÞRða;bÞI;Z ðrÞdC

#
þ
Z

C
ða;NXþ1Þ
I;p

�LðaÞv ð~pðaÞðrÞÞR
ða;NXþ1Þ
I;p ðrÞdC

þ
Z

C
ða;NXþ1Þ
I;v

~pðaÞðrÞRða;NXþ1Þ
I;v ðrÞdCþ

Z
C
ða;NXþ1Þ
I;Z

~pðaÞðrÞRða;NXþ1Þ
I;Z ðrÞdC

!

þ
Xnk

Li¼1

Z
C
ðNXþ1;Li Þ
v

~pðNXþ1;LiÞðrÞRðNXþ1Þ
v ðrÞdCþ

Z
C
ðNXþ1;LiÞ
Z

~pðNXþ1;LiÞðrÞRðNXþ1Þ
Z ðrÞdC

 

þ
Z

C
ðNXþ1;LiÞ
p

�LðNXþ1Þ
v ð~pðNXþ1;LiÞðrÞÞRðNXþ1Þ

p ðrÞdCþ
XNX

b¼1

Z
C
ððNXþ1;LiÞ;bÞ
I;p

�LðNXþ1Þ
v ð~pðNXþ1;LiÞðrÞÞRðNXþ1;bÞ

I;p ðrÞdC

"

þ
Z

C
ððNXþ1;LiÞ;bÞ
I;v

~pðNXþ1;LiÞðrÞRðNXþ1;bÞ
I;v ðrÞdCþ

Z
C
ððNXþ1;Li Þ;bÞ
I;Z

~pðNXþ1;LiÞðrÞRðNXþ1;bÞ
I;Z ðrÞdC

#!
¼ 0 ð41Þ
with CðNXþ1;LiÞ
� ¼ CðNXþ1Þ

�
T

C0t;Li
and CððNXþ1;LiÞ;bÞ

I;� ¼ CðNXþ1;bÞ
I;�

T
C0t;Li

.
By enforcing the weighted residual formulation (41), the residuals on the imposed boundary and continuity conditions

are minimised in an integral sense with respect to a set of weighting functions ~pð�ÞðrÞ. If these weighting functions are
chosen to be any arbitrary function, enforcing the integral equation will minimise the residual errors themselves. To ob-
tain a numerical model which can be solved, the test functions need to be expanded in terms of a limited set of basis
functions tw(r):
~pð�ÞðrÞ ¼
Xnð�Þw

a¼1

~pð�Þw tð�Þw ðrÞ ¼ tð�ÞðrÞ~pð�Þw ; ð42Þ
In order to minimise the residual errors along the boundaries and interfaces, a complete set of basis functions tw(r) must be
used to expand the weighting functions. The choice of basis functions may vary for each boundary but needs to be able to
represent any arbitrary field on the associated boundary. In a conventional WBM domain, the entire set of basis functions
used to approximate the acoustic pressure field inside the domain is used as weighting functions, following the classical
Galerkin weighted residual approach. In the case of a multi-level WBM model however, the use of the full basis for the pres-
sure field in the external region is unnecessary since the unbounded basis functions UNXþ1;Li

n are chosen such that they can
accurately approximate any field on the associated truncation circle C0t;Li. The addition of functions of the remaining trunca-
tion circles introduces unneeded information to the expansion and results in a deterioration of the already unfavourable
numerical conditioning of the WBM system of equations. The choice of basis functions to expand the weighting functions
in the resulting multi-level WBM model can be summarised as:
twðrÞ ¼
UðaÞw ðrÞ r 2 @XðaÞ;
UðNXþ1;LiÞ

w ðrÞ r 2 C0t;Li
:

(
ð43Þ
5. Numerical validation

In this section the applicability and efficiency of the proposed modelling approach is validated based on three numerical
validation studies, which have an increasing level of modelling complexity. First, the accuracy and convergence of the meth-
od is assessed based on the study of the scattering behaviour of a single circular scatterer which can be sound-hard (zero
normal velocity) or sound-soft (zero acoustic pressure). Next, the feasibility of the approach is shown based on the scattering
behaviour of a configuration of five circular scatterers in air on which different combinations of acoustic boundary conditions
are applied. Finally, the efficiency of the method is illustrated by means of a general underwater acoustics problem, in which
five complex shaped scatterers are present. A generic Matlab implementation of both the classical and multi-level WBM ap-
proach is used in this validation study.
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Fig. 5. Validation example 1: problem definition.
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5.1. Accuracy and convergence assessment: single-scattering problem

In order to assess the accuracy and convergence of the proposed methodology we consider the simple single-scatterer
problem given in Fig. 5. A plane wave which propagates in air (c = 340 m/s, q0 = 1.225 kg/m3) at an angle of incidence a im-
pinges on a single circular scatterer. This scatterer is centered at point c1 = (0,0) and has a radius of 0.5m. On the surface of
this obstacle both uniform sound-soft and uniform sound-hard boundary conditions are considered. In this way, the Anger–
Jacobi series expansion [42] can be used to obtain an exact reference solution pref(r) for the scattered field. Both problems can
be modelled efficiently using the classical WBM approach. This requires the definition of a truncation boundary Ct which
coincides with the scatterer boundary along which the required boundary conditions are applied. In order to validate the
multi-level extension of the WBM, a second circular truncation C0t;2 is introduced. This boundary is centered at c2 = (0,3)
and has a radius of 0.75 m. The entire region enclosed by C0t;2 is filled with a single bounded WBM subdomain which is cou-
pled to the exterior region using the equivalent normal velocity coupling conditions with the characteristic impedance q0c as
coupling impedance Zint . The number of wave functions in the interior domain is chosen such that the spatial resolution of
the interior expansion matches that of the exterior pressure expansion along the interface C0t;2. In this way, the incident and
scattered fields are simply transmitted through the domain and the second scatterer becomes acoustically transparent.

The predicted acoustic pressure field at 2040 Hz using the multi-level WBM model which applies an expansion (38) using
N = 50 circumferential orders for the approximation for the unbounded pressure pðNXþ1;iÞ; i ¼ 1;2 is compared to an exact
solution calculated in a region which contains both the actual scatterer and the artificial scattering level. At this frequency,
the product of the acoustic wavenumber k and a problem related dimension a, being the radius of the scatterer, equals
ka = 6p. In Fig. 6(a), the real part of the acoustic field due to a plane wave which impinges at an angle of incidence a = p/
3 on a sound-soft scatterer is shown. This figure shows that the resulting pressure field is continuous across the artificial
boundary C0t;2, which is indicated by the dashed circle. The accuracy of the multiple-scattering model is given in more detail
in Fig. 6(b), which shows the relative prediction errors e as defined by Eq. (44) for multi-level WBM predictions of the com-
plex amplitude of the resulting pressure field with respect to the exact solution. The distribution of e shows that the largest
approximation errors occur on the artificial truncation boundary but they are still less than 10�5. The overall prediction accu-
racy in the rest of the computational domain is however not influenced by these errors and a nearly perfect match with the
analytical solution is observed.
eðp̂ðrÞÞ ¼
jp̂ðrÞ � pref ðrÞj
jpref ðrÞj

ð44Þ
The accuracy of the multi-level modelling approach is studied in more detail by computing the scattered acoustic field for
several combinations of possible values for the excitation frequency, the angle of incidence a, the scatterer boundary con-
ditions and the number of orders N used in the WBM approximation. In Table 1, the average relative prediction error for
the complex acoustic pressure amplitude eav as defined by Eq. (45) in Npp = 2500 points on a postprocessing circle Cpp which
encircles the acoustic scatterer are given for a total of 24 possible problem definitions (two types of boundary conditions,
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Fig. 6. Validation example 1: contour plots, ka = 6p, N = 50, a = p/6, sound-soft boundary conditions: (a) Rðp̂ðrÞÞ ðPaÞ, (b) Relative prediction errors e (–).

Table 1
Validation example 1: average prediction accuracy eav compared to an exact solution for the plane wave scattering of a single circular scatterer along a circle
with radius Rpp = 1.5 m.

a ka = 4p ka = 6p ka = 8p

30 50 30 50 30 50

Sound-hard scatterer
0 5.57 � 10�12 1.64 � 10�14 1.27 � 10�10 6.92 � 10�15 6.97 � 10�5 1.59 � 10�14

p/6 2.56 � 10�12 9.57 � 10�15 1.46 � 10�10 1.31 � 10�14 6.97 � 10�5 1.37 � 10�14

p/3 7.15 � 10�12 1.46 � 10�14 1.42 � 10�10 1.27 � 10�14 6.97 � 10�5 1.01 � 10�14

p/2 9.28 � 10�12 1.10 � 10�14 1.38 � 10�10 5.90 � 10�15 6.97 � 10�5 1.15 � 10�14

Sound-soft scatterer
0 9.21 � 10�12 2.04 � 10�14 1.83 � 10�10 1.07 � 10�14 9.25 � 10�5 2.93 � 10�14

p/6 2.81 � 10�12 1.47 � 10�14 1.93 � 10�10 2.12 � 10�14 9.25 � 10�5 2.19 � 10�14

p/3 7.24 � 10�12 2.24 � 10�14 2.03 � 10�10 1.62 � 10�14 9.25 � 10�5 1.56 � 10�14

p/2 1.14 � 10�11 1.00 � 10�14 1.94 � 10�10 1.04 � 10�14 9.25 � 10�5 1.41 � 10�14
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four possible angles of incidence and three excitation frequencies). All these problems are modelled using multi-level WBM
models with two possible numbers of basis function orders for the exterior acoustic pressure fields linked to both modelling
levels. The number of basis functions in the bounded subdomain is chosen such that the spatial resolution of the interior
pressure expansion matches that of the unbounded wave functions. The errors show that the prediction accuracy is approx-
imately independent of the angle of incidence and the imposed boundary conditions for a fixed number of orders in the
expansion. All the models with 50 orders in the expansions for both levels have converged to the exact solution. The models
with 30 orders show a decrease in prediction accuracy when the excitation frequency becomes higher. This can be explained
by the fact that the circumferential spatial resolution of the wave functions in the unbounded pressure expansions is inde-
pendent of the excitation frequency, while the acoustic wavelengths in the exact solution become shorter when the excita-
tion frequency rises. As a result, more unbounded wave functions are needed to obtain a certain prediction accuracy.
eavðp̂ðrÞÞ ¼
1

Npp

XNpp

i¼1

jp̂ðriÞ � pref ðriÞj
jpref ðriÞj

ð45Þ
To study the effect of the number of orders N in the unbounded wave function expansion on the average acoustic pressure
amplitude prediction error, Fig. 7 shows these errors for both the classical and multi-level WBM approach with varying N for
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a sound-soft scattering problem with incidence angle a = p/6 at ka = 6p and a sound-hard scattering problem with a = p/12
at ka = 8p. Both convergence curves show that for problems which can be handled with both approaches, the classical WBM
and its multi-level expansion exhibit a very similar convergence behaviour and converge to the exact solution given by the
analytical series expansion. These curves also illustrate the need for a higher number of basis functions in the unbounded
wave function expansion to obtain a similar prediction accuracy at a higher excitation frequency.

5.2. Multiple-scattering problem: five circular obstacles

In this validation example, the scattering behaviour of a configuration of multiple circular shaped scatterers is considered.
The aim of this study is to illustrate the applicability of the multi-level modelling strategy for multiple-scattering problems
with arbitrary boundary conditions. The problem geometry is shown in Fig. 8. An acoustic plane wave propagates in air with
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an incidence angle a and impinges on five circular obstacles with varying diameters ranging between 0.55 m and 1.15 m. The
five scatterers are centered at the four corners and the centerpoint of a square with width and height 3 m. To study the
behaviour of the proposed methodology at different frequencies, angles of incidence and with various types of boundary con-
ditions, three problem settings are considered. Firstly, a collection of sound-hard scatterers on which a plane wave at a = p/8
impinges is studied at ka = 2p, with a the radius of the largest scatterer. Secondly, all the surfaces are assumed to be sound-
soft at ka = 3p and a = p/4. Finally, a constant acoustic impedance of 441 � 1241j Ns/m3 is imposed on four of the five scat-
terers (modelled using truncation boundaries C0i; i ¼ 1; . . . ;4), while the central obstacle is sound-hard. This configuration is
excited at ka = 4p by a plane wave propagating at a = 3p/8. Since no analytical solutions for these three problems exist, a
refined indirect variational Boundary Element model (using 52,160 DOFs) is used to validate the results obtained with
the multi-level WBM model consisting of five modelling levels.

In Fig. 9(a), the real part of the multi-level WBM acoustic pressure field for the second problem setting (sound-soft scat-
terers) is shown. In the multi-level model, a total of N = 30 orders is used to capture the circumferential variations in the
pressure field on the largest scatterer C01. The number of orders used in the other modelling levels is chosen such that their
spatial resolution matches that of the basis functions for C01. This results in a lower number of basis functions in the total
model compared to the use of a fixed number of orders for the expansions for each of the modelling levels like in the first
validation example and significantly reduces the computational effort for the multi-level WBM calculations. The figure
shows that the imposed boundary conditions are accurately taken into account. The accuracy of the multiple-scattering
model is given in more detail in Fig. 9(b), which shows the relative prediction errors e (44) of the multi-level WBM prediction
with respect to the BEM reference solution. The distribution of e shows that the largest approximation errors occur in the
shadow zone behind the scatterers. These errors originate from the low pressure values at these locations, which result
in an inaccurate assessment of the relative prediction errors. The overall prediction accuracy in the whole computational
domain shows a very good agreement between both models and is of the same order of magnitude as the accuracy of the
BEM reference model.

Fig. 10 compares the real and imaginary parts of the predicted acoustic pressure fields along the circle Cpp with radius
Rpp = 3 m with the BEM results for the scattered acoustic field for the three considered problem definitions. For all the quan-
tities shown in this figure, a good agreement between both approaches is observed. These results indicate the applicability of
the proposed approach for the study of multiple-scattering problems with general boundary conditions and show that the
method is capable of tackling these problems at various frequencies and angles of incidence. These observations are further
illustrated by the results presented in Table 2. In this table the influence of the number of approximation functions in the
various levels of the WBM model and the excitation frequency on the averaged prediction accuracy eav (45) of the complex
acoustic pressure amplitude in Npp = 2500 points on Cpp becomes apparent. For each of the problem settings, four multi-level
WBM models are built and solved. The first three apply respectively 20, 25 or 30 approximation function orders along the
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Table 2
Validation example 2: average prediction accuracy eav compared to a reference BEM solution for the plane wave scattering of multiple circular scatterers along a
circle with radius Rpp = 3 m.

N Orders ] DOFLi ] DOFtotal eav (–)

L1 L2 L3 L4 L5

Sound-hard scatterers, ka = 2p, a = p/8
20 Variable 41 21 35 19 29 145 4.79 � 10�5

25 Variable 51 27 43 23 37 181 4.79 � 10�5

30 Variable 61 31 53 29 45 219 4.79 � 10�5

30 Constant 61 61 61 61 61 305 4.79 � 10�5

Sound-soft scatterers, ka = 4p, a = p/4
20 Variable 41 21 35 19 29 145 3.03 � 10�4

25 Variable 51 27 43 23 37 181 9.58 � 10�5

30 Variable 61 31 53 29 45 219 9.57 � 10�5

30 Constant 61 61 61 61 61 305 9.57 � 10�5

Damped scatterers, ka = 6p, a = 3p/8
20 Variable 41 21 35 19 29 145 2.77 � 10�1

25 Variable 51 27 43 23 37 181 7.70 � 10�3

30 Variable 61 31 53 29 45 219 1.17 � 10�4

30 Constant 61 61 61 61 61 305 1.17 � 10�4
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largest scattering boundary. The number of orders for the four other scatterers is chosen to match the spatial resolution of
the C01, as described above. The fourth model uses 30 orders for each of the pressure expansions in the exterior region. For the
first problem setting, using 20 orders in the pressure expansion is sufficient for the WBM model to obtain the prediction
accuracy of the reference BEM model. When the model is further refined, the average prediction accuracy remains the same.
The sound-soft configuration shows that the model using 20 orders has not yet completely converged, but the other three
models converge to the same accuracy, which is slightly higher than the final accuracy for the sound-hard case due to the
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higher excitation frequency. For the acoustically damped problem, the prediction accuracy steadily increases when adding
more basis functions until convergence is attained using 30 orders. The models using a constant number of orders result for
each of the problem settings in exactly the same prediction accuracy as the models using a variable number of approxima-
tion functions for each of the scatterers, while the latter results in a model with 30% less degrees of freedom.

5.3. Performance assessment: complex multiple-scattering problem

Finally, the computational efficiency of the multi-level WBM approach for general acoustic multiple-scattering problems
is studied by considering the example shown in Fig. 11. An acoustic point source is located inside a C-shape with a finite
thickness. The resulting acoustic pressure field impinges on a configuration of four acoustic scatterers, two circles and
two squares. All the scattering objects in this validation example are considered to be sound-hard. The acoustic medium sur-
rounding the obstacles is water (c = 1500 m/s, q0 = 1000 kg/m3). The scattering behaviour of this configuration is studied in
the frequency range between 50 Hz and 10,000 Hz (ka � 0.1p� � �20p, with a = 1, the outer radius of the C-shaped scatterer).

The underwater scattering problem is modelled using both the classical indirect variational BEM and the newly developed
multi-level WBM modelling approach. Several BE models are built for this problem. The details of the models which are used
in this validation study are listed in Table 3. For each of the models the number of degrees of freedom, the expected model
validity and the computational load needed to calculate a pressure amplitude response function consisting of 996 frequency
lines between 50 Hz and 10,000 Hz is given. The validity of the models is estimated using both a commonly applied rule of
thumb, which states that at least six linear elements are needed to model a single acoustic wavelength, and a more complex
rule derived in [25], taking into account numerical pollution effects which become dominant in the mid-frequency range. In
the WBM models, a 5-level unbounded multi-level model is combined with 10 interior WBM subdomains. For the circular
scatterers, the truncation boundaries of the associated WBM levels coincide with the scatterer geometry. The squares are
modelled by taking a truncation circle which intersects the four corners and by introducing four disjoint bounded subdo-
mains along each of the straight edges. The C-shape is modelled using a truncation circle which coincides with the outer
circular edge of the C and adding two convex subdomains in the interior of the C. Along all the interfaces between the
different subdomains in this model the pressure–velocity continuity conditions (8) and (9) are enforced. The total number
of basis functions used in the WBM model is constant over the entire frequency range and is chosen such that the
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Table 3
Model information for validation example 3.

Element size (mm) ] DOF Mesh validity: 6 el./k (Hz) Mesh validity [23] (Hz) Calculation time (s) eav (–)

Boundary Element Method
11.5 5974 20,759.3 4685.7 7958.04 0.1044
3.0 22,902 79,577.5 11,477.1 334,357.20 0.0064
1.5 45,808 159,154.9 18,218.7 2,540,118.72

Wave Based Method
– 2153 – – 8426.55 0.0065
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computational load of the model is approximately the same as that of the coarsest BEM model. The calculation times listed in
this table consist of the cost of frequency-dependent operations only, being the time needed to build and solve the linear
system of equations for the BEM and the time to build and solve the multi-level system matrices for the WBM. The
multi-level WBM models are implemented using Matlab R2007b, while the BEM calculations are performed using
LMS/Sysnoise5.6. All the calculations were carried out on a Linux based 2.66 GHz Intel Xeon system with 32 gigabytes of
memory.

The contours in Fig. 12(a) show the amplitude of the acoustic pressure at 3000 Hz (ka = 6p), calculated using the multi-
level WBM. In Fig. 12(b), the relative error e (44) of this wave field with respect to the results from the reference BEM model
(h � 1.5 mm) is shown. The acoustic amplitude prediction errors remain well within the range of 0–1%, except at the pres-
sure nodal lines, where the error calculation itself is inaccurate due to almost-zero division.

Fig. 13 compares the frequency response function in the frequency range between 50 and 10,000 Hz of the acoustic sound
pressure level Lp (46) and phase angle / of the acoustic field in the response point 6 indicated in Fig. 11 for the BEM reference
model and the multi-level WBM model. The good agreement between the WBM results and the reference is evident from this
figure.
ε
 [

−
]

ε
 [

−
]

ε
 [

−
]

F

Lp ¼ 20log10
jp̂ðrÞj

20 lPa

� �
ð46Þ
A more detailed comparison is made in Fig. 14 where the frequency-dependent average pressure amplitude errors in the
10 response points in Fig. 11 for the two BEM models and the WBM model are shown. As shown in the bottom figure, the
WBM model is valid over the entire frequency range presented here. It is clear that the WBM result (bottom figure) is far
more accurate than the one obtained by the BEM model with the same calculation time (top figure). According to the com-
monly applied rule of thumb, the BEM model should be valid in the entire frequency range studied in this validation. The
results however show that the prediction accuracy starts to deteriorate much earlier. The alternative validity criterion pre-
dicts this breakdown much more accurately. As shown in the middle figure, the BEM mesh needs to be refined in order to
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obtain the same overall average prediction accuracy as the WBM calculation. This results in an average computation time of
335.7 s per frequency, while the WBM model only needs 8.7 s per frequency to obtain a similar overall prediction accuracy. It
can be concluded that for this validation example the newly developed multi-level WBM modelling concept outperforms the
BEM by a factor of about 40. This clearly illustrates the computational efficiency potential of the proposed modelling concept.
6. Conclusions

This paper discusses a new multi-level modelling framework for the numerical solution of general two-dimensional
acoustic multiple-scattering problems in the low- and mid-frequency range. The proposed approach is based on an existing
deterministic Trefftz-based numerical modelling technique, called the Wave Based Method, and is aimed to alleviate or re-
move some of the geometrical constraints faced when applying this method for the study of unbounded problems with mul-
tiple scatterers. The main idea of the approach is to consider the multiple objects in a problem as different ‘levels’ of the
problem. Each level considers the reflection and scattering on the boundaries of one particular object, using existing
WBM techniques for unbounded problems. A special compound wave function set and application of the superposition prin-
ciple for multiple outgoing wave fields through an adapted weighted residual formulation link the different levels, yielding a
single multi-level numerical model which governs the entire multiple-scattering problem.

The new method is validated by means of three numerical examples, illustrating both the excellent accuracy and the
superior numerical performance as compared to classical element-based numerical modelling techniques. This reduction
in computational load, combined with the lack of pollution errors, makes the multi-level WBM particulary suited for the
treatment of multiple-scatterer problems in an extended frequency range.

The underlying theoretical basis of the multi-level approach presented in this paper does not rely on particular details of
the problem type being solved. As a result, the same approach can be readily extended to other fields of applications (solid
dynamics, electro-magnetics, . . .) and three-dimensional problems. These extensions are currently being investigated and
will be reported on in the near future. Moreover, the extension of this approach to the study of interior problems containing
multiple complex shaped inclusions is a topic of current research. Initial results of this investigation have been published in
[43].
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